Maths factoring

By Christine Wong Pui Lei

Example 1 :
Factor 2x3 - x2 - 5x -2 =0
Answer : (Ax2 - Bx + C)(Nx - O) = ANx3 - (AO + BN)x2 + (BO + CN)x - CO
Take note of the + / - sign.
AN=2
AO + BN = 1
BO + CN = -5
CO =2
A=BNBO
B= 0 -9
C=AOCN
N=
O= 1 4
ANCO= 1x4 1-5
ANCO= 2x2
ANCO=-1X-4
ANCO=-2x-2

A=2BNBO
B=-3-3 0 -6 -9
C=1AOCN
N=1
O=2 4 1 1 4
ANCO= 1x4 1-5
ANCO= 2x2
ANCO=-1X-4
ANCO=-2x-2

(2x2 +3x +1)(x -2)=0
(2x +1)(x + 1)(x-2)=0
Note : There are another 2 sets of figures can fulfill the chart.
A=2BNBO
B=3 3 -3
C=-2AOCN
N=1
O=-1 -2 -2
ANCO= 1x4 1-5
ANCO= 2x2
ANCO=-1X-4
ANCO=-2x-2

A=1BNBO
B=1 2 -1
C=-2AOCN
N=2
O=-1 -1 -4
ANCO= 1x4 1-5
ANCO= 2x2
ANCO=-1X-4
ANCO=-2x-2

Note : You may get the answer for some equation on your 1st try.

Refer to the example below.
Example 2 :
Factor 2x3 + x2 - 2x -1 =0
Answer : (Ax2 - Bx + C)(Nx - O) = ANx3 - (AO + BN)x2 + (BO + CN)x - CO
AN=2
AO + BN = -1
BO + CN = -2
CO =1
A=1BNBO
B=0 0 0
C=-1AOCN
N=2
O=-1 -1 -2
ANCO= 1x2 -1-2
ANCO=-1X-2

(x2 -1)(2x + 1)=0
(x +1)(x - 1)(2x+ 1)=0

For power 4 equation, the chart is as follow :
(Ax3 - Bx2 + Cx - D)(Nx - O) = ANx4 - (AO + BN)x3 + (BO + CN)x2 - (CO + DN)x + DO
A=BNCOBOCN
B=
C=
D=AODN BNCO BO+CN
N=
O=
ANDO= AO+BNCO+DN